Logarithmic convexity for third order in time partial differential equations
نویسندگان
چکیده
In this short note, we want to describe the logarithmic convexity argument for third order in time partial differential equations. As a consequence, first prove uniqueness result whenever certain conditions on parameters are satisfied. Later, show instability of solutions if initial energy is less or equal than zero.
منابع مشابه
HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE
We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ON TE EXISTENCE OF PERIODIC SOLUTION FOR CERTAIN NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS
متن کامل
Entropy and convexity for nonlinear partial differential equations.
Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal ...
متن کاملA Microscopic Convexity Principle for Nonlinear Partial Differential Equations
Caffarelli-Friedman [7] proved a constant rank theorem for convex solutions of semilinear elliptic equations in R2, a similar result was also discovered by Yau [28] at the same time. The result in [7] was generalized to R by Korevaar-Lewis [27] shortly after. This type of constant rank theorem is called microscopic convexity principle. It is a powerful tool in the study of geometric properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Mechanics of Solids
سال: 2022
ISSN: ['1741-3028', '1081-2865']
DOI: https://doi.org/10.1177/10812865221137083